3.1 Основы системного анализа

Системный анализ - система понятий, методов и технологий для изучения, описания, реализации систем различной природы и характера, проблем предметных областей; это система общих законов, методов, приемов исследования таких систем

Предметная область - раздел науки, изучающий предметные аспекты системных процессов и системные аспекты предметных процессов и явлений. Это определение можно считать системным определением предметной области.

Системный анализ тесно связан с синергетикой. Синергетика - междисциплинарная наука, изучающая общие идеи, методы и закономерности организации (изменения структуры, ее пространственно-временного усложнения) различных объектов и процессов, инварианты этих процессов. "Синергетика" в переводе - совместный, согласованно действующий. Система и системность: основные понятия

Дадим определение системы и подсистемы.

Система - объект, процесс в котором участвующие элементы связаны некоторыми связями и отношениями.

Подсистема - часть системы с некоторыми связями и отношениями.

Любая система состоит из подсистем, любая подсистемы любой системы может быть рассмотрена сама как система.

Цель - образ несуществующего, но желаемого - с точки зрения задачи или рассматриваемой проблемы - состояния среды, т.е. такого состояния, которое позволяет решать проблему при данных ресурсах. Это - описание, представление некоторого наиболее предпочтительного состояния системы.

Пример. Основные социально-экономические цели общества: экономический рост; полная занятость населения; экономическая эффективность производства; стабильный уровень цен; экономическая свобода производителей и потребителей; справедливое распределение ресурсов и благ; социально-экономическая обеспеченность и защищённость; торговый баланс на рынке; справедливая налоговая политика.

Понятие цели конкретизируется различными объектами и процессами.

Пример. Цель - функция (найти значение функции). Цель - выражение (найти аргументы, превращающие выражение в тождество). Цель - теорема (сформулировать и/или доказать теорему - т.е. найти условия превращающие сформулированное предложение в истинное высказывание). Цель - алгоритм (найти, построить последовательность действий, продукций обеспечивающих достижения требуемого состояния объекта или процесса перевода его из исходного состояния в финальное). Две системы назовём эквивалентными, если они имеют одинаковые цель, составляющие элементы, структуру. Между такими системами можно установить связь (связи) некотором конструктивным образом.

Целенаправленное поведение системы - поведение системы (т.е. последовательность принимаемых ею состояний), ведущее к цели системы.

Задача - некоторое множество исходных посылок (входных данных к задаче), описание цели, определенной над множеством этих данных и, может быть, описание возможных стратегий достижения этой цели или возможных промежуточных состояний исследуемого объекта.

Пример. Глобальная экономическая задача, с которой сталкивается любое общество - корректное разрешение конфликта между фактически неограниченным человеческим потреблением товаров и услуг и ограниченными ресурсами (материальными, энергетическими, информационными, людскими), которые могут быть актуализированы для удовлетворения этих потребностей. При этом рассматривают следующие основные экономические задачи общества: Что производить (какие товары и услуги)? Как производить (каким образом и где)? Для кого производить (для какого покупателя, рынка)?

Решить задачу - означает определить четко ресурсы и пути достижения указанной цели при исходных посылках.

Решение задачи - описание или представление того состояния задачи, при котором достигается указанная цель; решением задачи называют и сам процесс нахождения, описания этого состояния.

Описание (спецификация) системы - это описание всех её элементов (подсистем), их взаимосвязей, цели, функции при некоторых ресурсах т.е. всех допустимых состояний.

Структура - это все то, что вносит порядок в множество объектов, т.е. совокупность связей и отношений между частями целого, необходимые для достижения цели.

Структуры систем бывают разного типа, разной топологии (или же пространственной структуры). Рассмотрим основные топологии структур (систем). Соответствующие схемы приведены на рисунках ниже.

Линейные структуры:

Рис. Структура линейного типа.

Иерархические, древовидные структуры:

Рис. Структура иерархического (древовидного) типа.

Часто понятие системы предполагает наличие иерархической структуры, т.е. систему иногда определяют как иерархическую целостность.

Сетевая структура:

Рис. Структура сетевого типа.

Матричная структура:

Рис. Структура матричного типа.

Структура является связной, если возможен обмен ресурсами между любыми двумя подсистемами системы (предполагается, что если есть обмен i- ой подсистемы с j-ой подсистемой, то есть и обмен j-ой подсистемы с i-ой.

Если структура плохо описываема или определяема, то такое множество объектов называется плохо структурируемым.

Способность к нахождению решений в плохо формализуемых, плохо структурируемых средах - наиболее важная отличительная черта интеллектуальности (наличия интеллекта).

Интеллектуальными системами называют такие человеко-машинные системы, которые обладают способностью выполнять (или имитировать) какие-либо интеллектуальные процедуры, например, автоматически классифицировать, распознавать объекты или образы, обеспечивать естественный интерфейс, накапливать и обрабатывать знания, делать логические выводы. Используют и другой, более старый термин - “система искусственного интеллекта”. В информатике актуальна задача повышения интеллектуальности компьютерных и программных систем, технологий и обеспечения интеллектуального интерфейса с ними. В то же время интеллектуальные системы базируются на неполных и не полностью формализуемых знаниях о предметной области, правилах вывода новых знаний, поэтому должны динамически уточняться и расширяться (в отличие от, например, формализуемых и полных математических знаний).

Система - это средство достижения цели или все то, что необходимо для достижения цели (элементы, отношения, структура, работа, ресурсы) в некотором заданном множестве объектов (операционной среде).

Дадим теперь более строгое определение системы.

Система - множество связанных друг с другом элементов некоторого вполне определенного множества (некоторых определенных множеств), образующих целостный объект при условии задания для этих объектов и отношений между ними некоторой цели и некоторых ресурсов для достижения этой цели.

Цель, элементы, отношения или ресурсы подсистем при этом будут уже другими, отличными от указанных для всей системы.

Рис. Структура системы в общем виде.

Любая система имеет внутренние состояния, внутренний механизм преобразования входных сигналов, данных в выходные (внутреннее описание) и внешние проявления (внешнее описание). Внутреннее описание даёт информацию о поведении системы, о соответствии (несоответствии) внутренней структуры системы целям, подсистемам (элементам) и ресурсам в системе, внешнее описание - о взаимоотношениях с другими системами, с целями и ресурсами других систем.

Морфологическое описание системы - описание строения или структуры системы: описание совокупности А элементов этой системы и необходимого для достижения цели набора отношений R между ними.

Морфологическое описание задается кортежом:

где А - множество элементов и их свойств, В - множество отношений с окружающей средой, R - множество связей в А, V - структура системы, тип этой структуры, Q - описание, представление системы на каком-либо языке. Из морфологического описания системы получают функциональное описание системы (т.е. описание законов функционирования, эволюции системы), а из нее - информационное описание системы (описание информационных связей как системы с окружающей средой, так и подсистем системы) или же так называемую информационную систему, а также информационно-логическое (инфологическое) описание системы.

Морфологическое описание системы зависит от учитываемых связей, их глубины (связи между главными подсистемами, между второстепенными подсистемами, между элементами), структуры (линейная, иерархическая, сетевая, матричная, смешанная), типа (прямая связь, обратная связь), характера (позитивная, негативная).

Основные признаки системы: целостность, связность или относительная независимость от среды и систем (это наиболее существенная количественная характеристика системы), с исчезновением связности исчезает и сама система, хотя элементы системы и даже некоторые связи, отношения между ними могут быть сохранены; наличие подсистем и связей между ними или наличие структуры системы (это наиболее существенная качественная характеристика системы), с исчезновением подсистем или связей между ними может исчезнуть и сама система; возможность обособления или абстрагирования от окружающей среды, т.е. относительная обособленность от тех факторов среды, которые в достаточной мере не влияют на достижение цели; связи с окружающей средой по обмену ресурсами; подчиненность всей организации системы некоторой цели (как это, впрочем, следует из определения системы); эмерджентность или несводимость свойств системы к свойствам элементов.

При системном анализе различных объектов, процессов, явлений необходимо пройти следующие этапы системного анализа: Формулировка целей, их приоритетов и проблем исследования. Определение и уточнение ресурсов исследования. Выделение системы (от окружающей среды) с помощью ресурсов. Определение и описание подсистем. Определение и описание целостности (связей) подсистем и их элементов. Анализ взаимосвязей подсистем. Построение структуры системы. Установление функций системы и её подсистем. Согласование целей системы с целями подсистем. Анализ (испытание) целостности системы. Анализ и оценка эмерджентности системы. Испытание системы (системной модели), её функционирования.

Когнитология - междисциплинарное (философия, нейропсихология, психология, лингвистика, информатика, математика, физика и др.) научное направление изучающее методы и модели формирования знания, познания, универсальных структурных схем мышления.

При системном анализе систем удобным инструментом их изображения является инструментарий когнитивной структуризации.

Цель когнитивной структуризации - формирование и уточнение гипотезы о функционировании исследуемой системы, т.е. структурных схем причинно- следственных связей, их количественной оценки.

Причинно-следственная связь между системами (подсистемами, элементами) А и В положительна (отрицательна), если увеличение или усиление А ведёт к увеличению или усилению (уменьшению или ослаблению) В.

Пример. Когнитивная структурная схема для анализа проблемы энергопотребления может иметь следующий вид:

Рис. Пример когнитивной карты.

Противоречия между неограниченностью желания человека познать мир и ограниченной возможностью сделать это, между бесконечностью природы и конечностью ресурсов человечества имеют много важных последствий, в том числе, - и в самом процессе познания человеком окружающего мира. Одна из таких особенностей познания, которая позволяет постепенно, поэтапно разрешать эти противоречия - использование аналитического и синтетического образа мышления, т.е. разделения целого на части и представления сложного в виде совокупности более простых компонент и, наоборот, соединения простых и построение, таким образом, сложного. Это также относится и к индивидуальному мышлению, и к общественному сознанию, и ко всему знанию людей, и к самому процессу познания.

Расчлененность мышления на анализ и синтез и взаимосвязь этих частей являются очевидными признаками системности познания

Деятельность системы может происходить в двух режимах: развитие (эволюция) и функционирование.

Функционирование - это деятельность системы без смены цели.

Развитие - это деятельность системы со сменой целей.

Основные признаки развивающихся систем: самопроизвольное изменение состояния системы; противодействие (реакция) воздействию окружающей среде (другим системам) приводящее к изменению первоначального состояния среды; постоянный поток ресурсов (постоянная работа по их перетеку) направленный против уравновешивания их потока с окружающей средой

Если развивающаяся система развиваема за счет собственных материальных, энергетических, информационных, человеческих или организационных ресурсов внутри самой системы, то такие системы называются саморазвивающимися (самодостаточно развивающимися). Это форма развития системы - самая желательная и перспективная.

Классификация систем. Большие и сложные системы

Классификацию систем можно осуществить по разным критериям. Её часто жестко невозможно проводить и она зависит от цели и ресурсов.

Приведем основные способы классификации (возможны и другие критерии классификации систем). По отношению системы к окружающей среде: открытые (есть обмен с окружающей средой ресурсами); закрытые (нет обмена ресурсами с окружающей средой). По происхождению системы (элементов, связей, подсистем): искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.); естественные (живые, неживые, экологические, социальные и т.д.); виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали); смешанные (экономические, биотехнические, организационные и т.д.). По описанию переменных системы: с качественными переменными (имеющие только лишь содержательное описание); с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные); смешанного (количественно - качественное) описания. По типу описания закона (законов) функционирования системы: типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы); не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона); параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей); типа “Белый (прозрачный) ящик” (полностью известен закон). По способу управления системой (в системе): управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально); управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов); с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Под регулированием понимается коррекция управляющих параметров по наблюдениям за траекторией поведения системы - с целью возвращения системы в нужное состояние (на нужную траекторию поведения системы; при этом под траекторией системы понимается последовательность принимаемых при функционировании системы состояний системы, которые рассматриваются как некоторые точки во множестве состояний системы).

Система называется сложной, если в ней не хватает ресурсов (главным образом, - информационных) для эффективного описания (состояний, законов функционирования) и управления системой - определения, описания управляющих параметров или для принятия решений в таких системах (в таких системах всегда должна быть подсистема принятия решения).

Сложность системы может быть внешней и внутренней.

Внутренняя сложность определяется сложностью множества внутренних состояний, потенциально оцениваемых по проявлениям системы, сложностью управления в системе.

Внешняя сложность определяется сложностью взаимоотношений с окружающей средой, сложностью управления системой потенциально оцениваемых по обратным связям системы и среды.

Сложные системы бывают: сложности структурной или статической (не хватает ресурсов для построения, описания, управления структурой); динамической или временной (не хватает ресурсов для описания динамики поведения системы и управления ее траекторией); информационной или информационно - логической, инфологической (не хватает ресурсов для информационного, информационно-логического описания системы); вычислительной или реализации, исследования (не хватает ресурсов для эффективного прогноза, расчетов параметров системы или их проведение затруднено нехваткой ресурсов); алгоритмической или конструктивной (не хватает ресурсов для описания алгоритма функционирования или управления системой, для функционального описания системы); развития или эволюции, самоорганизации (не хватает ресурсов для устойчивого развития, самоорганизации).

Система называется устойчивой, если она сохраняет тенденцию стремления к тому состоянию, которая наиболее соответствует целям системы, целям сохранения качества без изменения структуры или не приводящим к сильным изменениям структуры системы на некотором заданном множестве ресурсов (например, на временном интервале). Понятие “сильное изменение” каждый раз должно быть конкретизировано, детерминировано.

Система называется связной, если любые две подсистемы обмениваются ресурсом, т.е. между ними есть некоторые ресурсоориентированные отношения, связи.

Управление в системе и управление системой

Управление в системе - внутренняя функция системы, осуществляемая в системе независимо от того, каким образом, какими элементами системы она должна выполняться.

Управление системой - выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы.

Управление системой (в системе) используется для различных целей: увеличения скорости передачи сообщений; увеличения объема передаваемых сообщений; уменьшения времени обработки сообщений; увеличения степени сжатия сообщений; увеличения (модификации) связей системы; увеличения информации (информированности).

Рис. Общая схема управления

Функции и задачи управления системой: Организация системы - полное, качественное выделение подсистем, описание их взаимодействий и структуры системы (как линейной, так и иерархической, сетевой или матричной). Прогнозирование поведения системы т.е. исследование будущего системы. Планирование (координация во времени, в пространстве, по информации) ресурсов и элементов, подсистем и структуры системы, необходимых (достаточных, - в случае оптимального планирования) для достижения цели системы. Учет и контроль ресурсов, приводящих к тем или иным желаемым состояниям системы. Регулирование - адаптация и приспособление системы к изменениям внешней среды. Реализация тех или иных спланированных состояний, решений.

Функции и задачи управления системой взаимосвязаны, а также взаимозависимы.

Эволюция и устойчивость систем

Эволюцию систем можно понимать как целенаправленное (на основе выбора) движение, изменение этих систем (как неравновесных систем) по некоторой траектории развития.

Устойчивость систем - способность системы сохранять свое движение по траектории (из точек состояний) и своё функционирование и она должна базироваться на самоподдержке, саморегулировании достаточно долго. Асимптотическая устойчивость системы состоит в возвращаемости системы к равновесному состоянию при t стремящемся к бесконечности из любого неравновесного состояния.

Эффективность системы - способность системы оптимизировать (глобально-потенциально или локально-реально) некоторый критерий эффективности, например, типа соотношений "затраты на производство - объем прибыли". Это способность системы производить ресурсоориентированный эффект и не ухудшать движение по пути к достижению поставленной цели.

Основные факторы устойчивого развития большинства экономических систем: величина дефицита платежей и задолженность; ритмичность и динамичность производства и потребления; качество и структура экономико-правовых законов и норм, уровень взаимодействия с исполнительными, правоохранительными и финансовыми структурами, квалифицированность сотрудников, уровень систем поддержки принятия решений; использование новых информационных технологий и экономических механизмов, особенно, рыночных; инновационная активность и структура инновационных программ; социоэкономическая иммобилизация населения, в том числе, политика возврата вывезенных и скрытых капиталов; инвестиционная политика и реализация инвестиционных программ направленных на устойчивое развитие; уровень государственного регулирования указанных выше факторов и др.

Развиваемость, управляемость, эффективность систем определяющим образом влияет на стратегическое планирование и выработку организационных стратегий.

Методы получения, использования информации и системного анализа

Методы получения и использования информации можно разделить на три группы, иногда условно разграничиваемые. Эмпирические методы или методы получения эмпирической информации (эмпирических данных). Теоретические методы или методы получения теоретической информации (построения теорий). Эмпирико - теоретические методы (смешанные, полуэмпирические) или методы получения эмпирико-теоретической информации.

Охарактеризуем кратко эмпирические методы. Наблюдение - сбор первичной информации или эмпирических утверждений о системе (в системе). Сравнение - установление общего и различного в исследуемой системе или системах. Измерение - нахождение, формулирование эмпирических законов, фактов. Эксперимент - целенаправленное преобразование исследуемой системы (систем) для выявления ее (их) свойств.

Кроме классических форм их реализации в последнее время используются и такие формы как опрос, интервью, тестирование и другие формы.

Охарактеризуем кратко эмпирико - теоретические методы. Абстрагирование - установление общих свойств и сторон объекта (или объектов), замещение объекта или системы ее моделью. Абстракция в информатике и в математике играет важнейшую роль, понимается в двух следующих смыслах:

а) абстракция, абстрагирование - метод исследования (изучения) некоторых явлений, объектов, в результате которого можно выделить основные, наиболее важные для исследования свойства, стороны исследуемого объекта или явления и игнорировать несущественные и второстепенные; б) абстракция - как описание или представление объекта (явления), полученного с помощью метода абстрагирования; особо важно и используемо в информатике такое понятие, как абстракция потенциальной осуществимости, которое позволяет нам исследовать конструктивно объекты, системы с потенциальной осуществимостью т.е. они могли бы быть осуществимы, если бы не было ограничений по ресурсам (время, пространство, вещество, энергия, информация, организация, человек); используются и абстракция актуальной бесконечности - существования бесконечных, неконструктивных множеств и систем, процессов, а также абстракция отождествления - возможности отождествления любых двух одинаковых букв, символов любого алфавита, объектов - независимо от места их появления в словах, конструкциях, хотя их информационная ценность при этом может быть различна. Анализ - разъединение системы на подсистемы с целью выявления их взаимосвязей. Синтез - соединение подсистем в систему с целью выявления их взаимосвязей. Индукция - получение знания о системе по знаниям о подсистемах; индуктивное мышление - распознавание эффективных решений, ситуаций и затем проблем, которые оно может разрешать. Дедукция - получение знания о подсистемах по знаниям о системе; дедуктивное мышление - определение проблемы и поиск затем ситуации его разрешающей. Эвристики, использование эвристических процедур - получение знания о системе по знаниям о подсистемах и наблюдениям, опыту. Моделирование и/или использование приборов - получение знания об объекте с помощью модели и/или приборов; моделирование основано на возможности выделять, описывать и изучать наиболее важные факторы и игнорировать при формальном рассмотрении второстепенные. Исторический метод - нахождение знаний о системе путем использования его предыстории - реально существовавшей или же мыслимой, возможной (виртуальной). Логический метод - метод нахождения знаний о системе путём воспроизведения его некоторых подсистем, связей или элементов в мышлении, в сознании. Макетирование - получение информации по макету объекта или системы, т.е. с помощью представления структурных, функциональных, организационных и технологических подсистем в упрощенном виде, сохраняющем информацию, необходимую для понимания взаимодействия и связей этих подсистем. Актуализация - получение информации с помощью активизации, инициализации ее, т.е. переводом из статического (неактуального) состояния в динамическое (актуальное) состояние; при этом все необходимые связи и отношения (открытой) системы с внешней средой должны быть учтены (именно они актуализируют систему). Визуализация - получение информации с помощью наглядного или визуального представления состояний актуализированной системы; визуализация предполагает возможность выполнения в системе операции типа “передвинуть”, “повернуть”, “укрупнить”, “уменьшить”, “удалить”, “добавить” и т.д. (как по отношению к отдельным элементам, так и к подсистемам системы), т.е. - это метод визуального восприятия информации.

Эти методы получения информации применяются системно.

Рис. Структура познания системы

Информационная система - система поддержки и автоматизации интеллектуальных работ - поиска, администрирования, экспертиз и экспертных оценок или суждений, принятия решений, управления, распознавания, накопления знаний, обучения.

Информационная среда - система взаимодействующих информационных систем, включая и информацию, актуализируемую в этих системах.

<< | >>
Источник: Захаров К.В., Бочарников В.П., Захаров А.К., Циганок А.В.. Логистика, эффективность и риски внешнеэкономических операций. - К, 2006. 2006

Еще по теме 3.1 Основы системного анализа:

  1. Системный анализ
  2. 2.4 Научный инструментарий системного анализа
  3. Этика системного анализа
  4. Глава24. Внедрение результатов системного анализа
  5. Глава 22. Базовая методика системного анализа
  6. Системный анализ
  7. Условия участия заинтересованных сторон в системном анализе
  8. Особенности внедрения результатов системного анализа
  9. Как обеспечить необходимую и достаточную вооруженность системного анализа знаниями
  10. раздел IV Процедуры системного анализа
  11. 2.3 Характеристика основных этапов системного анализа
  12. Единство и обособленность анализа и синтеза в системных исследованиях
  13. раздел V. Методологическое и методическое обеспечение системного анализа
  14. Системный анализ и структуризация региональных проблем охраны окружающей среды
  15. Дрогобыцкий, Иван Николаевич.. Системный анализ в экономике: учебник для студентов вузов, обучающихся по специальностям «Математические методы в экономике», «Прикладная информатика» / И.Н. Дрогобыцкий. — 2-е изд., перераб. и доп. — M.: ЮНИТИ-ДАНА,2011. - 423 с., 2011
  16. Анализ издержек фирмы является одним из важнейших направлений экономического анализа ее деятельности и служит основой для планирования и контроля над издержками, принятия решений об объеме производства и ассортименте выпускаемой продукции в целях обеспечения прибыльности.
- Бюджетна система України - Бюджетная система РФ - ВЕД України - ВЭД РФ - Государственное регулирование экономики России - Державне регулювання економіки в Україні - Инвестиции - Инфляция - Информатика для экономистов - История экономики - История экономических учений - Коммерческая деятельность предприятия - Контроль и ревизия в России - Контроль і ревізія в Україні - Макроэкономика - Математические методы в экономике - Международная экономика - Микроэкономика - Мировая экономика - Муніципальне та державне управління в Україні - Налоги и налогообложение - Основы экономики - Отраслевая экономика - Политическая экономия - Региональная экономика России - Товароведение - Философия экономики - Ценообразование - Эконометрика - Экономика отрасли - Экономика предприятий - Экономика природопользования - Экономика регионов - Экономика труда - Экономическая география - Экономическая история - Экономическая статистика - Экономическая теория - Экономический анализ -