<<
>>

§ 31. ФОРМИРОВАНИЕ ПОРТФЕЛЯ БЕЗ РИСКА. ПРОСТАЯ БИНОМИНАЛЬНАЯ МОДЕЛЬ ОЦЕНКИ ПРЕМИИ ОПЦИОНОВ

В основе моделей оценки премии опционов лежит посылка о том, что инвестор имеет возможность сформировать из опционов и активов, лежащих в основе опционов, портфель, нейтральный к риску изменения цены актива или опциона.

Поэтому необходимо сказать несколько слов о концепции формирования портфеля без риска.

а) Портфель без риска

Купив акции, инвестор подвергает себя риску финансовых по­терь, которые могут возникнуть в связи с падением курса ценных бумаг. Чтобы избежать такой ситуации, вкладчику следует сфор­мировать соответствующий портфель из акций и опционов. Для такого портфеля падение курса акций должно компенсироваться ростом цены опционов и наоборот. При составлении портфеля необходимо помнить, что изменение цены акций и опциона колл имеет положительную корреляцию, а опциона пут — отрицатель­ную. Таким образом, данный портфель будет нейтрален к риску изменения курсов ценных бумаг. Поскольку курсы бумаг на рынке постоянно меняются, портфель остается нейтральным к риску только в течение короткого промежутка времени. Чтобы сохранить это качество, его состав должен постоянно пересматриваться. На­пример, в момент /7 портфель не несет риска при соотношении один опцион колл и 0,3 акции. В момент t2 один опцион колл — 0,5 акции. Это значит, что инвестору в первом случае следует купить 0,3 акции на каждый проданный опцион колл, а во втором, вследствие изменившихся обстоятельств — 0,5 акции. В результа­те в течение всего периода действия опционного контракта можно поддерживать нейтральность портфеля. Чтобы воспользоваться предложенной техникой для оценки премии опциона, необходимо ответить на вопрос, какой уровень доходности должен такой пор­тфель принести инвестору. Поскольку он является нейтральным к риску, то должен обеспечить вкладчику доходность, равную ставке без риска.

б) Простая биноминальная модель оценки премии опционов

Используем рассмотренный принцип для оценки премии опци­она применительно к простой биноминальной модели, то есть модели, когда значение опциона и курса акций рассматривается только в начале и конце некоторого периода времени Т.

Предпо­ложим, выписывается европейский опцион колл на 5 месяцев с ценой исполнения 36 долл. В момент заключения контракта цена акций равна 33 долл. Непрерывно начисляемая ставка без риска 10%. На основе своих расчетов инвестор определил, что курс акций к моменту истечения контракта может составить 34 долл. или 38 долл. Необходимо оценить премию опциона.

Если ко времени окончания контракта курс акций составит 34 долл., стоимость опциона будет равна нулю. Если цена возрастет до 38 долл., то премия составит 2 долл. Предположим, инвестор формирует портфель без риска, приобретая п акций и продавая один опцион. Данный портфель не будет нести риск, если в конце периода Т его стоимость окажется одинаковой, независимо от реальной динамики курса акций.

При Р= 34 долл. стоимость портфеля составит 34 п долл. При Р = 38 долл. она будет равняться 38 п долл. — 2 долл. Чтобы сформи­ровать портфель без риска, инвестор должен купить такое число акций, которое бы удовлетворяло уравнению:

34 п долл. = 38 n долл. - 2 долл.

Решая уравнение, получаем п = 0,5 акций. В этом случае порт­фель и при первом и при втором сценарии развития событий через 5 месяцев будет стоить 17 долл. Стоимость портфеля в момент заключения контракта составит:

33 долл. х0,5 - се = 16,5 долл. - се

Портфель без риска должен приносить инвестору доход, равный ставке без риска. Поэтому стоимость портфеля в начале периода Т должна соответствовать его дисконтированной стоимости через 5 месяцев, то есть:

16,5 долл.- се = 17 долл.е -0’1х0’4167= 16,31 долл.

Тогда

се =0,19 долл.

В рассмотренном примере премия опциона зависела в конечном итоге от тех значении, которые могла принять цена акций к мо­менту истечения опциона. Поэтому для построения «рабочей мо­дели», которую можно было бы использовать на практике,

необходимо ввести в нее элемент вероятностной оценки. Данная задача решается с помощью построения биноминальной модели, которую впервые предложили Дж. Кокс, С. Росс и М. Рубинштейн. Биноминальная модель используется для оценки премии амери­канских опционов, однако для простоты изложения мы рассмот­рим ее вначале применительно к европейскому опциону и после этого скорректируем относительно американского опциона.

<< | >>
Источник: Буренин А.Н.. Фьючерсные, форвардные и опционные рынки. — М.:Тривола,1994. — 232с.. 1994

Еще по теме § 31. ФОРМИРОВАНИЕ ПОРТФЕЛЯ БЕЗ РИСКА. ПРОСТАЯ БИНОМИНАЛЬНАЯ МОДЕЛЬ ОЦЕНКИ ПРЕМИИ ОПЦИОНОВ:

  1. СОДЕРЖАНИЕ
  2. § 29. ПАРИТЕТ И ВЗАИМОСВЯЗЬ ОПЦИОНОВ
  3. § 31. ФОРМИРОВАНИЕ ПОРТФЕЛЯ БЕЗ РИСКА. ПРОСТАЯ БИНОМИНАЛЬНАЯ МОДЕЛЬ ОЦЕНКИ ПРЕМИИ ОПЦИОНОВ