7.1. Подходы к анализу инвестиционных проектов в условиях риска и неопределенности
Существует необходимость методы работы с капитальным бюджетом в условиях неопределенности. Когда инвестиционное решение принято в условиях неопределенности, денежные потоки могут возникать в соответствии с одним из множества альтернативных сценариев. Мы не знаем заранее, какой из сценариев осуществится в действительности. Цели остаются все теми же: мы хотим узнать, на какую величину изменится рыночная стоимость фирмы в случае принятия решения в пользу вложения капитала. Однако процесс оценки гораздо сложнее, чем в условиях определенности. В условиях неопределенности существует своего рода противоречие между теоретически верным и практически осуществимым подходом. Теоретически безупречный подход состоит в том, чтобы учесть все возможные варианты сценариев денежных потоков. В большинстве случаев это трудно или невозможно, так как придется учитывать слишком много альтернатив.
Методы исследования неопределенности можно разбить на три группы. Одна группа методов делает попытку учесть в явном виде все альтернативные сценарии денежных потоков. К этой группе относятся методы предпочтительного состояния.
Методы другой группы требуют, чтобы было дано полное обобщенное описание активов, на основе которого можно будет определить их стоимость. Например, можно составить прогноз ожидаемых денежных потоков на каждый период и дисконтировать их по соответствующей ставке с поправкой на риск, определяя тем самым стоимость активов. Третья группа методов разработана для того, чтобы обеспечить более глубокое понимание характеристик инвестиций, особенно связанного с ними риска.
Это может принести пользу, даже если метод и не дает точного прогноза рыночной стоимости инвестиций. Анализ окупаемости, анализ чувствительности, стратегическое планирование могут послужить примерами таких методов.Хотя эти три подхода могут вступить в противоречие, их можно использовать и так, чтобы они дополняли друг друга. В условиях неопределенности любое инвестиционное решение в значительной мере основано на субъективных суждениях (на здравом смысле).
Чтобы принимать правильные решения, необходимо: а) понимать, каким образом альтернативные сценарии денежных потоков, возможные в результате инвестирования, повлияют на рыночную стоимость проекта; б) осознавать риск конкретного рассматриваемого инвестиционного проекта (этому поможет применение третьего подхода) и в) на основании своих заключений по первым двум пунктам оценить стоимость инвестиций (используя один из методов второй группы) так, чтобы данный проект можно было сравнивать с другими альтернативами.
Большинство инвесторов готовы пойти на риск только в том случае, если получат за это дополнительный выигрыш (в виде доходов). Поэтому для полноценного анализа инвестиций нужно определить, сколько стоит риск в глазах инвестора, то есть за какой дополнительный доход инвестор согласится рисковать.
Существует множество подходов к решению непростой проблемы анализа инвестиционных проектов в условиях риска и неопределенности. Рассмотрим наиболее известные из них.
1. Подходы, связанные с определением величины поправки на риск Ставка дисконтирования с поправкой на риск - наиболее часто применяемый подход. Напомним, что ставка дисконтирования с поправкой на риск рассчитывается как сумма ставки по безопасным вложениям и поправки на риск. У этого подхода есть ряд достоинств и недостатков. Основное достоинство метода заключается в том, что он основывается на хорошо известных законах функционирования рынка капитала (на модели определения цены капитальных активов). Пользуясь этим методом, предприятие оценивает инвестиционные предложения так, как это сделали бы сами акционеры. Но, несмотря на очевидные достоинства, у этого метода есть ряд недостатков: * использование ставки дисконтирования с поправкой на риск взято из модели определения цены капитальных активов (САРМ) - модели, построенной для совершенного рынка, а реальный рынок не удовлетворяет требованиям к совершенному рынку капитала (полная информация, неограниченное количество продавцов и покупателей, низкие входные и выходные барьеры и т.
д.). Кроме того, под риском в этой модели понимают степень отклонения фактической доходности инвестиций от среднерыночной, тогда как в реальной жизни риск более ассоциируется у менеджеров с опасностью потерь или в крайнем случае с вероятностью недополучения ожидаемых доходов; * метод основан на неявном предположении о том, что более отдаленные по времени денежные потоки более рискованны, причем рискованность денежных потоков растет заранее известным нам темпом (в реальности это не всегда так); * метод повышения ставки дисконтирования не позволяет учитывать конкретные источники риска; * очень трудно определить точное значение поправки на риск. Не всегда можно найти аналог оцениваемому инвестиционному проекту. Рационально обоснованные процедуры для этого отсутствуют, а значит, ставка дисконтирования - чисто субъективная величина, для определения ее значения требуется опыт применения методов дисконтирования. Неверное определение ставки дисконтирования с поправкой на риск может стать источником значительных ошибок, так как при дисконтировании погрешность накапливается в геометрической прогрессии. Подводя итог, можно сказать, что, несмотря на то что ставки дисконтирования с поправкой на риск широко используются, на практике этот метод может оказаться не вполне корректным и даже привести к ошибкам в исследованиях. Второй метод учета риска состоит в том, чтобы непосредственно оценить поправку на риск и вычесть ее из величины текущей стоимости, рассчитанной по ставке безрискового вложения. Третий возможный подход состоит в том, чтобы заменить ожидаемый денежный поток в каждый момент времени на его достоверный эквивалент и дисконтировать эти эквиваленты по ставке безрискового вложения. 2. Анализ метола достоверных эквивалентов Вместо того чтобы менять ставку дисконтирования, многие исследователи предлагают корректировать сами денежные потоки, рассчитав достоверные эквиваленты неопределенных денежных потоков. Достоверный эквивалент неопределенных денежных потоков - это такие определенные денежные потоки, полезность которых для предприятия точно такая же, как и полезность неопределенных денежных потоков. Использование в качестве достоверного эквивалента математического ожидания денежных потоков - самый простой метод анализа достоверных эквивалентов. Чтобы сделать поправку на риск, находят математическое ожидание денежных потоков для каждого момента времени.Математическое ожидание (МО) рассчитывается по формуле:
Если достоверный эквивалент равен математическому ожиданию денежных потоков, то ценность денег зависит исключительно от вероятности наступления каждого возможного состояния природы.
Ценность одной денежной единицы в i-м состоянии природы
Недостатки метода: * для сложного проекта трудно составить перечень всех возможных состояний природы;
Но есть, однако, недостатки, которые затрудняют использование метода достоверных эквивалентов в проектировании инвестиционных проектов: трудность определении RAPVE при отсутствии совершенных рынков.
3. Анализ методов принятия решений без использования численных значений вероятностей
На практике часто встречаются ситуации, когда оценить значение вероятности события чрезвычайно сложно. В этих случаях часто применяют методы, не использующие численные значения вероятностей: * максимакс - максимизация максимального результата проекта; * максимин - максимизация минимального результата проекта; * минимакс - минимизация максимальных потерь; * компромиссный - критерий Гурвица: взвешивание минимального и максимального результатов проекта.
Для принятия решений об осуществлении инвестиционных проектов строят матрицу. Столбцы матрицы соответствуют возможным состояниям природы - ситуациям, над которыми руководитель предприятия не властен. Строки матрицы соответствуют возможным альтернативам осуществления инвестиционного проекта - стратегии, которые может выбрать руководитель предприятия. В клетках матрицы указываются результаты каждой стратегии для каждого состояния природы.
Пример 2. Предприятие анализирует инвестиционный проект строительства линии по производству нового вида продукции. Существуют две возможности: построить линию большой мощности или построить линию малой мощности. Чистая приведенная стоимость проекта зависит от спроса на продукцию, а точный объем спроса неизвестен, однако известно, что существуют три основные возможности: отсутствие спроса, средний спрос и высокий спрос. В клетках матрицы (см. табл. 7.3) показана чистая приведенная стоимость проекта в соответствующем состоянии природы при условии, что предприятие выберет соответствующую стратегию. В последней строке показано, какая стратегия оптимальна в каждом состоянии природы. Максимаксное решение - построить линию большой мощности: максимальная чистая приведенная стоимость при этом составит 300, что соответствует сотуации высокого спроса. Максимаксный критерий отражает позицию руководителя-оптимиста, игнорирующего возможные потери.
Максиминное решение - построить линию малой мощности: минимальный результат этой стратегии - потеря 100 (что лучше, чем возможная потеря 200 при строительстве линии большой мощности). Максиминный критерий отражает позицию руководителя, совершенно не склонного рисковать и отличающегося крайним пессимизмом. Этот критерий весьма полезен в ситуациях, где риск особенно высок (например, когда от результатов инвестиционного проекта зависит само существование предприятия).
Для применения минимаксного критерия построим матрицу сожалений (табл. 7.4).
В клетках этой матрицы показана величина сожаления - разность между фактическим и наилучшим результатами, которого могло бы добиться предприятие в данном состоянии природы. Сожаление показывает, что теряет предприятие в результате принятия неверного решения. Минимаксное решение соответствует стратегии, при которой максимальное сожаление минимально. В нашем случае для линии малой мощности максимальное сожаление составляет 150 (в ситуации высокого спроса), а для линии большой мощности - 100 (при отсутствии спроса). Поскольку 100 < 150, минимаксное решение - построить линию большой мощности. Минимаксный критерий ориентируется не столько на фактические, сколько на возможные потери или упущенную выгоду. Критерий Гурвица заключается в том, что минимальному и максимальному результатам каждой стратегии присваивается "вес". Оценка результата каждой стратегии равна сумме максимального и минимального результатов, умноженных на соответствующий вес. Пусть вес минимального и максимального результатов равен 0,5, вес максимального - также 0,5. Тогда расчет для каждой стратегии будет следующим: линия малой мощности: 0,5 х (-100) + 0,5x150 - -50 + 75 = 25;Критерий Гурвица свидетельствует в пользу строительства линии большой мощности (поскольку 50 > 25).
Достоинство и одновременно недостаток критерия Гурвица заключается в необходимости присваивания весов возможным исходам; это позволяет учесть специфику ситуации, однако в присваивании весов всегда присутствует некоторая субъективность. Вследствие того что в реальных ситуациях часто отсутствует информация о вероятностях исходов, использование представленных выше методов в проектировании инвестиционных проектов вполне оправданно. Но выбор конкретного критерия зависит от специфики ситуаций и от индивидуальных предпочтений аналитика. 4. Анализ опционных методов Опционные критерии оценки инвестиционных проектов основаны на предположении о том, что любой инвестиционный проект можно уподобить опциону. Опцион - это ценная бумага, дающая владельцу право на покупку или продажу акции в некоторый будущий момент времени, но по заранее известной цене. Заплатив за опцион сейчас, инвестор покупает право на свободу выбора в будущем: он может либо воспользоваться этим выбором, либо нет. Стоимость опциона всегда неотрицательна (она положительна, если есть ненулевая вероятность получения выгоды от обещанной возможности, и равна нулю, если пользаваться этой возможностью невыгодно). Обычная биномиальная модель оценки опционов выглядит следующим образом. Пусть r - ставка процента, под которую можно привлечь или вложить капитал на один период, К - цена исполнения опциона покупателя, С - стоимость опциона покупателя в момент времени 0, Cu, Cd - стоимость опциона к концу срока, если цена акции в этот момент достигнет соответственно u * S и d * S.Доходы от опциона покупателя можно точно промоделировать доходами от соответствующим образом выбранного портфеля акций в количестве А и облигаций в количестве В.
Такой портфель называется хеджированным портфелем. Так как опцион покупателя полностью эквивалентен портфелю, стоимости опциона и портфеля должны быть одинаковы. Если наступит состояние u, то А * и * S + r * В = Сu Если же наступит состояние d, то A * d * S + r * B = Cd.Решая полученную систему уравнений относительно А и В, получаем
Достоинство метода заключается в том, что нет необходимости знать вероятности и и d.
Предлагается следующий теоретический подход к использованию опционных методов в анализе инвестиционных проектов: в качестве и х S и d х S можно взять денежные потоки от проекта в различных ситуациях (не обязательно знать вероятности этих ситуаций) и в качестве NPV использовать стоимость опциона. Основная трудность в том, что не во всех случаях можно подобрать адекватный промышленному проекту хеджированный портфель.
Применение опционных методов в анализе инвестиционных проектов представляется весьма перспективным, поскольку данные методы позволяют оценивать в денежном выражении имеющиеся у предприятия возможности и стоящие перед ним опасности.