<<
>>

16.2. Методы  расчета эффективности инвестиционных проектов

Метод расчета чистого приведенного эффекта[3. C. 262–263]

Метод основан на сопоставлении величины исходной инвестиции (IC) с общей суммой дисконтированных чистых денежных поступлений, генерируемых ею в течение прогнозируемого срока.

Поскольку приток денежных средств распределен во времени, он дисконтируется с помощью коэффициента r, устанавливаемого аналитиком (инвестором) самостоятельно, исходя из ежегодного процента возврата, который он хочет или может иметь на инвестируемый им капитал.

Допустим, делается прогноз, что инвестиция (IC) будет генерировать в течение n лет годовые доходы в размере Р1, Р2, … Рn. Общая накопленная величина дисконтированных доходов (РV) и чистый приведенный эффект (NPV) соответственно будут рассчитываться по формулам:

,                                                                                  (72)

.     (73)

Очевидно, что если: NPV > 0, то проект следует принять;

                                   NPV < 0, то проект следует отвергнуть;

                                    NPV = 0, то проект ни прибыльный,

ни убыточный.

При прогнозировании доходов по годам необходимо по возможности учитывать все виды поступлений как производственного, так и непроизводственного характера, которые могут быть ассоциированы с данным проектом. Так, если по окончании периода реализации проекта планируется поступление средств в виде ликвидационной стоимости оборудования или высвобождения части оборотных средств, они должны быть учтены как доходы соответствующих периодов.

Если проект предполагает не разовую инвестицию, а последовательное инвестирование финансовых ресурсов в течение m лет, то формула для расчета NPV модифицируется следующим образом:

,                                                                (74)

где      i – прогнозируемый средний уровень инфляции.

Расчет с помощью приведенных формул вручную достаточно трудоемок, поэтому для удобства применения этого и других методов, основанных на дисконтированных оценках, разработаны специальные статистические таблицы, в которых табулированы значения сложных процентов, дисконтирующих множителей, дисконтированного значения денежной единицы и тому подобного в зависимости от временного интервала и значения коэффициента дисконтирования.

Необходимо отметить, что показатель NPV отражает прогнозную оценку изменения экономического потенциала предприятия в случае принятия рассматриваемого проекта. Этот показатель аддитивен во временном аспекте, т. е. NPV различных проектов можно суммировать. Это очень важное свойство, выделяющее этот критерий из всех остальных и позволяющее использовать его в качестве основного при анализе оптимальности инвестиционного портфеля.

Метод расчета индекса рентабельности инвестиций [3. C. 263]

Этот метод является следствием предыдущего. Индекс рентабельности (PI) рассчитывается по формуле

.                                                                   (75)

Очевидно, что если: PI > 1, то проект следует принять;

                                    PI < 1, то проект следует отвергнуть;

                                    PI = 1, то проект ни прибыльный,

ни убыточный.

В отличие от чистого приведенного эффекта индекс рентабельности является относительным показателем. Благодаря этому он очень удобен при выборе одного проекта из ряда альтернативных, имеющих примерно одинаковые значения NPV, либо при комплектовании портфеля инвестиций с максимальным суммарным значением NPV.

Метод расчета нормы рентабельности инвестиций [3. C. 264–266]

Под нормой рентабельности, или внутренней нормой прибыли, инвестиции (IRR) понимают значение коэффициента дисконтирования, при котором NPV проекта равен нулю:

IRR = г, при котором NPV = f (г) = 0                  (76)

Смысл расчета этого коэффициента при анализе эффективности планируемых инвестиций заключается в следующем:

IRR показывает максимально допустимый относительный уровень расходов, которые могут быть ассоциированы с данным проектом.

Например, если проект полностью финансируется за счет ссуды коммерческого банка, то значение IRR показывает верхнюю границу допустимого уровня банковской процентной ставки, превышение которого делает проект убыточным.

На практике любое предприятие финансирует свою деятельность, в том числе и инвестиционную, из различных источников. В качестве платы за пользование авансированными в деятельность предприятия финансовыми ресурсами оно уплачивает проценты, дивиденды, вознаграждения и тому подобное, т.е. несет некоторые обоснованные расходы на поддержание своего экономического потенциала. Показатель, характеризующий относительный уровень этих расходов, можно назвать ценой авансированного капитала (СС). Этот показатель отражает сложившийся на предприятии минимум возврата на вложенный в его деятельность капитал, его рентабельность и рассчитывается по формуле средней арифметической взвешенной.

Экономический смысл этого показателя заключается в следующем: предприятие может принимать любые решения инвестиционного характера, уровень рентабельности которых не ниже текущего значения показателя СС (или цены источника средств для данного проекта, если он имеет целевой источник). Именно с ним сравнивается показатель IRR, рассчитанный для конкретного проекта, при этом связь между ними такова:

если: IRR > СС, то проект следует принять;

IRR < СС, то проект следует отвергнуть;

IRR = СС, то проект ни прибыльный, ни убыточный.

Практическое применение данного метода осложнено, если в распоряжении аналитика нет специализированного финансового калькулятора. В этом случае применяется метод последовательных итераций с использованием табулированных значений дисконтирующих множителей. Для этого с помощью таблиц выбираются два значения коэффициента дисконтирования r1 < r2 таким образом, чтобы в интервале (r1, r2) функция NPV = f(r) меняла свое значение с «+» на «–» или с «–» на «+». Далее применяют формулу

,                                                            (77)

где      r1 – значение табулированного коэффициента дисконтирования,

при котором f(r1) > 0 (f(r1) < 0);

r2 – значение табулированного коэффициента дисконтирования,

при котором f(r2) < 0 (f (r2) > 0).

Точность вычислений обратно пропорциональна длине интервала (r1, r2), а наилучшая аппроксимация с использованием табулированных значений достигается в случае, когда длина интервала минимальна (равна 1 %), т.е. r1, r2 – ближайшие друг к другу значения коэффициента дисконтирования, удовлетворяющие условиям (в случае изменения знака функции с «+» на «–»);

r1 – значение табулированного коэффициента дисконтирования,

минимизирующее положительное значение показателя NPV,

,(78)

r2 – значение табулированного коэффициента дисконтирования,

максимизирующее отрицательное значение показателя NPV,

.(79)

Путем взаимной замены коэффициентов r1, r2 аналогичные условия выписываются для ситуации, когда функция меняет знак с «–» на «+».

Метод определения срока окупаемости инвестиций [3. C. 266–268]

Этот метод – один из самых простых и широко распространен в мировой учетно-аналитической практике, не предполагает временной упорядоченности денежных поступлений.

Алгоритм расчета срока окупаемости (РР) зависит от равномерности распределения прогнозируемых доходов от инвестиции.

Если доход распределен по годам равномерно, то срок окупаемости рассчитывается делением единовременных затрат на величину годового дохода, обусловленного ими. При получении дробного числа оно округляется в сторону увеличения до ближайшего целого.

Если прибыль распределена неравномерно, то срок окупаемости рассчитывается прямым подсчетом числа лет, в течение которых инвестиция будет погашена кумулятивным доходом. Общая формула расчета показателя РР имеет вид:

, при котором >IC.                                             (80)

Некоторые специалисты при расчете показателя РР все же рекомендуют учитывать временной аспект. В этом случае в расчет принимаются денежные потоки, дисконтированные по показателю цены авансированного капитала. Очевидно, что срок окупаемости увеличивается.

Показатель срока окупаемости инвестиции очень прост в расчетах, вместе с тем он имеет ряд недостатков, которые необходимо учитывать в анализе.

Во-первых, он не учитывает влияние доходов последних периодов.

Во-вторых, поскольку этот метод основан на не дисконтированных оценках, он не делает различия между проектами с одинаковой суммой кумулятивных доходов, но различным распределением ее по годам.

В-третьих, данный метод не обладает свойством аддитивности.

<< | >>
Источник: Землянский А. А.. Финансовый менеджмент: учебное пособие / А. А. Землянский, Н. И. Морозова; ФГОУ ВПО «Волгоградская академия государственной службы». – Волгоград: Изд-во ФГОУ ВПО ВАГС,2006. – 204 с.. 2006

Еще по теме 16.2. Методы  расчета эффективности инвестиционных проектов:

  1. 4.2. Оценка эффективности инвестиционных проектов в промышленности
  2. Пояснения и рекомендациипо расчету эффективности реализации проекта
  3. 17.2. КРИТЕРИИ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ
  4. 10.7. Расчет эффективности инвестиционного проекта по стандартным критериям
  5. 10.8. Сравнительный анализ эффективности инвестиционных проектов
  6. Т. Новикова539/3 гр., научный руководитель Н.Ю. ПузыняВариативность факторов риска и их влияние на эффективность инвестиционных проектов
  7. М. Пучкова439/1 гр., научный руководитель М.В. Романовский Методы оценки рисков инвестиционных проектов
  8. 12Методы оценки эффективности инвестиционных проектов
  9. 35.КРИТЕРИИ И МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННЫХ ПРОЕКТОВ
  10. Оценка эффективности инвестиционных проектов Выбор ставки дисконтирования
  11. 16.2. Методы  расчета эффективности инвестиционных проектов
  12. Основные критерии эффективности инвестиционного проекта и методы их оценки