8.2. КВАДРАТИЧНАЯ АППРОКСИМАЦИЯ
Кривые, полученные этим методом, показаны на тех же рис. 8.1, 8.2. При этом для опциона колл результаты биномиального метода и квадратичной аппроксимации практически совпадают. Для опциона пут аппроксимация на некотором участке значительно отклоняется вниз от точного графика и лежит даже ниже внутренней стоимости опциона. Очевидно, что для улучшения результата на этом участке следует вместо аппроксимации брать внутреннюю стоимость.
Пример 8.1. Рассмотрим более подробно европейский и американский опционы колл на фьючерс с уплатой премии на страйке 5000 с экспирацией через 3 месяца в одной точке - при фьючерсной цене 5000 (по-прежнему 3-х месячная ставка R=100%, волатильность о=20%).
Формула Блэка в этом случае дает для европейского опциона C фес = 168.3. Для стоимости американского опциона квадратичная аппроксимация равна Cфас = 179.86, а критическая точка U = 5570.
В таблице 8.1 приведены стоимости европейского и американского опционов, полученные биномиальным методом. Параметр n обозначает количество шагов, на которое разбивается срок действия опциона при построении решетки. n 10 20 30 40 50 100 200 C фес 173.3 170.6 169.8 169.4 169.2 168.7 168.5 C фас 181.7 179.5 178.7 178.4 178.2 177.8 177.6 Таблица 8.1. Стоимости опционов, рассчитанные биномиальным методом
Строка таблицы для C в сопоставлении с точным значением C подтверждает, что биномиальный метод в пределе дает такой же результат, как и соответствующая модификация формулы Блэка-Шоулса. Последняя строка показывает, что точное предельное значение стоимости американского опциона находится в районе 177.4, то есть ошибка квадратичной аппроксимации составляет 1.5%.
Рассчитанное биномиальным методом при n=200 значение
C фас в критической точке квадратичной аппроксимации 5570 равно 575 (вместо 570 - ошибка около 1%), а точная критическая точка 5650.
Практически, однако, погрешностями порядка нескольких процентов можно пренебречь, поскольку такой или большей является разность цен спроса и предложения. Считается, что в биномиальном методе достаточно разбить срок действия оцениваемого опциона на 20 - 30 шагов для получения удовлетворительного результата. ¦
8.3. АМЕРИКАНСКИЙ ОПЦИОН НА ДИВИДЕНДНУЮ АКЦИЮ
Отдельно следует остановиться на особенностях американских опционов на дивидендную акцию. Биномиальный метод позволяет рассчитывать стоимость опционов и в этом случае. Простейший вариант исходных условий состоит в том, что заранее известен день выплаты дивидендов, после которого цена акции скачкообразно уменьшается на заранее известную величину. При этом возникает сложность формального характера, связанная с тем, что в отличие от упрощенного примера 5.1 в точном методе узлы решетки расположены неравномерно по цене (см. (5.7)), и одинаковый сдвиг в определенный момент во всех узлах приводит к рассогласованию решетки и резкому нарастанию количества узлов в последующем. Один из путей возможного решения проблемы состоит в том, чтобы несколько модифицировать решетку и с этой целью представить цену акции в любой момент существования опциона как сумму двух компонентов: регулярной составляющей, отражающей приведенные к текущему моменту будущие дивиденды за время существования опциона, и остальной части цены акции (ср. с (4.2)). Предполагается, что изменение только этой остальной части носит случайный характер и описывается биномиальной моделью. Так, если до экспирации опциона остается T = тт (т - шаг решетки по времени) и за этот период предполагается выплата одного дивиденда размера d в момент t, причем кт < t < (к + 1)т, то значения цены акции в узлах решетки определяются по правилу:
— г(t—т) т j л.Л-j , J- г(t _iт) .
в моменты iт< t: [S0 — de г( 1I)]vJw1 ' + de~
• в моменты 1т> t: [ S 0 — d ] V]w' ' , где' = 0,1,..., i; v = e т, w = e а .
Для приближенного аналитического расчета стоимости опциона колл применяются также следующие рассуждения: предполагается, что если и целесообразно проводить досрочное исполнение опциона, то только непосредственно перед выплатой дивидендов. Исходя из этого достаточно сравнить стоимость европейского опциона с исполнением в дату экспирации со стоимостями европейских опционов колл, сроки действия которых истекают непосредственно перед датами выплаты дивидендов, и выбрать наибольшую из получившихся величин в качестве стоимости американского опциона.
Еще один вариант анализа стоимости опциона состоит в том, чтобы изменить исходную посылку: считать, что вместо величины дивидендов заданы ставки дивидендов, то есть отношения размера дивиденда к цене акции на момент выплаты дивиденда. В этом случае после выплаты дивиденда узлы пропорционально смещаются вниз без нарушения решетки в последующем.
Для стоимости американского опциона колл на акцию, по которой за время существования опциона предполагается выплата одного дивиденда, в [10] приведено точное, хотя и довольно громоздкое, аналитическое выражение.
Американский опцион пут с точки зрения досрочного исполнения обладает свойством, которое не присуще опциону колл. Предположим, что имеется длинная позиция по опциону пут на акцию с экспирацией через 6 месяцев, страйк равен 5000, процентная ставка r=24%. Если к этому моменту цена акции упала, скажем, до 500, то исполнить такой опцион досрочно заведомо выгоднее, чем ожидать дня экспирации. Купив акцию по 500, потребовав исполнения опциона и поставив ее по цене 5000, можно разместить полученную прибыль под проценты с результатом ко дню экспирации
4500e = 4500e = 5074 , что больше максимально возможных 5000 на день экспирации. Естественно, не обязательно исполнять опцион, если есть основания предполагать, что цена акции снизится еще сильнее, - необходимо выбрать момент, когда выражение ( E — S )erT окажется максимальным (T- время, оставшееся до экспирации).