8.1. БИНОМИАЛЬНЫЙ МЕТОД
Биномиальный метод позволяет рассчитывать стоимость не только европейских, но и американских опционов. Продолжая пример 5.1 (раздел 5.2), предположим, что r=360%. Для стоимости европейского опциона в узле 5000 за день до экспирации было получено значение 50 e гт = 49 . 5. Это значение необходимо сравнить с внутренней стоимостью опциона и в качестве стоимости американского опциона взять наибольшее из двух. Поскольку внутренняя стоимость опциона в узле 5000 равна нулю, то стоимость американского опциона совпадает со стоимостью европейского: 49.5. Однако в следующем узле 5200 ситуация меняется: стоимость европейского опциона равна 200 e гт = 198 , а внутренняя стоимость 200, следовательно, американский опцион должен стоить 200. Продолжая расчеты, в исходной точке для стоимости американского опциона получаем 219, тогда как европейский опцион при тех же условиях стоил 214.
Графики стоимости американских опционов на фьючерс с уплатой премии Cфес, Pфес изображены на рис. 8.1, 8.2. Результаты получены биномиальным методом при количестве шагов в решетке n=50. На каждом из графиков выделяется критическая точка U, которая делит график на две части. Для опциона колл правая, а для опциона пут левая часть графика прямолинейны и совпадают с графиком внутренней стоимости. Для сравнения в том же масштабе изображены также кривые стоимости европейских опционов с уплатой и без уплаты премии. Стоимость американского опциона колл на фьнмерс [руб]
Рис. 8.1. Стоимость американского опциона колл на фьючер с уплатой премии
Стоимость американского опциона пут на фьючерс |руб]
Рис. 8.2. Стоимость американского опциона пут на фьючерс
с уплатой премии